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For two silicates with the garnet structure, Mg3Al2Si3O12 (pyrope) and Fe3Al2Si3O12 (almandine), a rigid-ion
lattice-dynamical model provides good agreement with the observed vibrational spectra. On examining the
estimates of thermodynamic functions, as derived from the calculated phonon density of states, the agreement
of entropy with the calorimetric data reported in the literature is not as satisfactory as that for other garnets.
The situation can be notably improved at all temperatures in a most simple way if an order-disorder equilibrium
concerning the distribution of the Mg or Fe atoms around their sites is assumed to take place; the variation
of such equilibrium with temperature accounts for a sluggish “order-disorder” transition around 100 K.

1. Introduction

In recent years the study of the vibrational spectra of single
crystals in comparison with lattice-dynamical estimates derived
from atom-atom empirical potentials has led to a substantially
improved interpretation of these spectra in solids; furthermore,
the extent of application of such empirical potentials and their
validity can be checked, also in view of better performances.

Following our interest in the field, which started from
molecular crystals,1-3 we tried to extend our Born-von Karman
lattice-dynamical calculations to inorganic crystals of ionic
character, many of which exist in nature as minerals. Here, we
considered an extensive series of compounds, including oxides,
silicates, and carbonates.4-17 In all these cases, for the sake of
relative simplicity, a rigid-ion model was used.

Our calculations involved the whole Brillouin zone, so that,
in addition to Raman- and infrared-active vibrational frequen-
cies, estimates of several physical properties depending on the
phonon density of states could also be verified; among these
properties, particularly important are thermodynamic functions
such as entropy and the heat capacity in a wide range of
temperature, as well as atomic displacement parameters (crystal-
lographic “ADPs”).

All these theoretical estimates were always shown to be in
good to excellent agreement with the corresponding experi-
mental data. Therefore, such a satisfactory behavior of atom-
atom potentials has confirmed the practical possibility of using
them to obtain reasonable estimates not only of “first-law”
functions such as energy or enthalpy but also of “second-law”
functions such as entropy and free energy. As a consequence,
on improving such estimates, there is a reasonable prospect of
their eventual application to interpreting chemical equilibria in
solids at different temperatures or phase transitions.

On applying the same procedures to silicate garnets, satisfac-
tory results in line with the others were obtained for Ca-rich

terms, such as Ca3Al2Si3O12 (grossular) and Ca3Fe2Si3O12

(andradite). Instead, if Ca is replaced by Mg or Fe, as for
Mg3Al2Si3O12 (pyrope) and Fe3Al2Si3O12 (almandine), the
agreement with the experimental data (in particular, entropy)
was notably inferior; here, the situation at and above room
temperature could be notably improved in practice if the
possibility of a low-temperature order-disorder transition
concerning the Mg or Fe atoms was considered.9

The complexity of the problem suggested further investiga-
tion, on one hand, to improve the picture of the available
experimental data or, on the other hand, in quest of a reasonable
heuristic model affording a better agreement of thermodynamic
estimates with their experimental counterparts, including the
low-temperature region in proximity to the order-disorder
transition. Furthermore, the performance of a model considering
a free-energyminimum with respect to that of a model
considering minimum energy has also been taken into account,
at least as a potential future development in dealing with such
complex cases.

2. Procedure of Calculation

Our calculations proceed according to the classic rigid-ion
lattice-dynamical model and follow a well-established scheme.2,4

Using a set of empirical atom-atom functions derived from
the best fit to the vibrational frequencies of a group of oxides
and silicates (see Table 1), the second derivatives of the potential
energy with respect to the mass-weighted atomic shifts are
evaluated; then, the so-called dynamical matrices are obtained
by summing the corresponding derivatives multiplied by
exp(-iqrp-p′), where q is the wave vector andrp-p′ is the
distance vector between the atomsp andp′ concerned; for the
Coulombic contributions, a summation over the reciprocal lattice
has been adopted.18

As a result of these calculations, besides the optically active
vibrational frequencies and their interpretation, if the wave
vectorq is varied all over the Brillouin zone, the phonon density
of statesg(νi) can also be obtained: for this purpose, in our
works a particular “uneven” sampling reduces the number of
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points in the Brillouin zone to be considered to about a hundred,
thereby saving computing time very notably.19,20

From the density of states (with the normalizing condition:
∑i g(νi)∆νi ) 1), the estimates of thermodynamic functions can
be derived, according to well-known expressions in statistical
mechanics:

whereE, S, andCv are the molar estimates of vibrational energy,
entropy, and specific heat at constant volume, respectively,k
and h are the Boltzmann and the Planck constants,N is
Avogadro’s number, andT is the absolute temperature.

A similar procedure holds for the theoretical evaluation of
the crystallographic atomic displacement parameters or “ADPs”
(asU’s); here, in view of the anisotropy,also the eigenVectors
are important:

whereEi is the mean energy of the vibrational mode,ei(p) is
the mass-adjusted polarization vector of the atomp, that is, the
portion concerning this atom (three components) of theith
eigenvectorêi of the dynamical matrix corresponding to the
mode, andm(p) is the atomic mass; here, owing to vibrational
anisotropy, rather than being over the density of states, the
summation∑i is extended to all the modes in the whole Brillouin
zone.21

3. Vibrational Frequencies

Observed values for the Raman- and infrared-active funda-
mentals of pyrope and almandine are reported in Tables 2 and
3, respectively, together with the corresponding calculated
values. Here, the experimental data reported in refs 22 and 23,
which were the basis for reference in our former work,9 have
been implemented with new data obtained by Hofmeister et al.
and with additional Raman measurements.24 With respect to our
previous results,9 there are only a few variations: for instance,
for pyrope the value of anEg frequency now reported as 309
instead of 342 cm-1 is in much better agreement with our lattice-

TABLE 1: Empirical Potentials Used Here

Atomic Charge (Electrons);
O Calculated by Difference with Respect to the Charge Balance

Si Mg Fe Al

-1.418 -1.482 -1.097 -1.286

Stretching Potentials:
Energy (kJ/mol)) A{exp[-2B(r - C)] - 2 exp[-B(r - C)]

A B C

Si-O 2798.03 0.756 24 1.641 73
Mg-O 58.0805 1.503 04 2.304 94
Fe-O 73.7643 1.489 95 2.208 57
Al-O 264.3066 1.374 06 1.909 97
O‚‚‚O (<5.50) 5.97077 0.851 46 3.676 60

Bending Potentials for the Bond Angleâ:
K (mdyn/rad2) ) A + B cosâ + C cos2 â

A B C

O-Si-O 0.125 69 -0.625 73 1.117 16
O-Al-O 0.482 90 0.659 45 0.047 47
O-Mg-O 0.164 46 -0.090 38 -0.318 14
O-Fe-O 0.038 89
Si-O-Si 0.138 83
Al-O-Al 0.120 07
Si-O-Al 0.181 20

Bending-Stretching Potentials
K (mdyn‚rad)) A + B(â - 109.47) (â in deg)

A B

O-Si-O/Si-O 0.100 91 -0.054 80
O-Al-O/Al-O 0.140 44 -0.001 49

Stretching-Stretching PotentialsK (mdyn)
Si-O/Si-O 0.115 38
Al-O/Al-O 0.047 44

TABLE 2: Frequencies (cm-1) for Infrared- or Raman-Active Modes in Pyrope at Room Temperature

T1u (TO)
obs22 140 200 238 260 279 339 365 385 423 458 478 536 583 664 878 906 976
obs23 134 195 221 259 336? 336 383 422 455 478 535 581 650 871 902 972
calc9 a 162 205 249 277 317 363 380 397 441 457 506 526 545 620 887 934 955
calc25 153 170 231 235 273 317 381 417 432 476 494 556 611 681 841 878 974

T1u (LO)
obs22 152 218 240 263 280 353 370 400 422? 474? 528? 556 618 667 889? 940 1063
obs23 152 218 223 263 357 357 400 423 475 530 557 620 650 890 941 1060
calc9 a 164 209 257 300 319 370 400 404 453 497 557 526 610 642 898 957 1015
calc25 156 173 231 257 273 319 402 432 443 486 532 610 636 710 877 913 1068

T2g

obs23 208 230 272 285 318 350 379 490 510 598 648 866 899 1062
Chopelasb 208 ? 300-310 318 342 347 380 490 510 598 647 866 899 1062
obs33c 222 322 353 383 492 512 598 650 871 902 1066
calc9 a 166 185 259 318 334 368 403 475 546 638 671 891 937 1027
calc25 193 227 247 297 323 353 367 473 515 607 644 844 876 1062

Eg A1g

obs23 203 342 365 439 524 626 911 938 362 562 925
Chopelasa 206 309 379 439? 523 627 867 938 362 561 925
obs33c 211 344 375 525 945 364 563 928
calc9 a 207 313 369 408 553 571 868 880 351 574 935
calc25 207 308 364 431 507 633 816 943 343 524 851

a Our calculated values9 using potential no. 4. There are slight differences with respect to our older values, due to the introduction of additional
terms in the Coulombic lattice sums, to improve convergence.b New Raman data, from Chopelas (personal communication, 1999).c Observed
values by Kolesov and Geiger;33 these authors only have observed an additional T2g line at 135 cm-1 and an Eg line at 284 cm-1.

E ) ∑i g(νi )∆νihνi{
1/2 + [exp(hνi/kT) - 1]-1}

S) E/T - 3kN∑i g(νi )∆νi ln[1 - exp(hνi/kT)]

Cv )

3R∑i g(νi )∆νi(-hνi/kT)2 exp(hνi/kT)/[exp(hνi/kT) - 1]-2

U(p) ) [Nm(p)]-1∑i(2πνi)
-2Eiei(p) ei(p)*T
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dynamical calculations. Conversely, in the new measurements
a T2g frequency around 342 cm-1 should not be a fundamental;
for almandine, there are only a few changes in the attribution
of the observed frequencies.

The possibility of using a different potential set independent
of fit to these particular substances has also been considered;
this set (“BEST”) was derived by the best fit to a series of oxides
and silicates not including these garnets.12 However, the results
of these calculations are markedly inferior to our older ones, to
the point that some estimated values according to “BEST” are
irreconcilable with the observations, and for this reason none
of them are reported in Table 2. For instance, the intermediate
A1g frequency calculated in this way for pyrope is nearly 100
cm-1 higher than the corresponding observed value. It may be
interesting to note that for reasons of symmetry in garnets all
the A1g frequencies involve motion of the oxygen atoms only;
such observations indicate the possibility of attaining potentials
of more general use by accounting for the polarizability of these
atoms (see also below).

In conclusion, the data in Tables 2 and 3 clearly show a
lattice-dynamical interpretation of the vibrational spectra of
pyrope and almandine based on atom-atom potentials to be
satisfactory; however, the interpretation of the vibrational spectra
of garnets is not easy due to the notable number of atoms in
the unit cell affording a thick distribution of vibrational
frequencies, together with the possible presence of combinations,
overtones, and also spurious peaks which are often encountered
experimentally; for this reason, some details in the current
interpretation of the spectra still need confirmation. Probably
the most significant check of the validity of the model is
provided by examining the A1g modes, which are only three in
number, and for this reason confusion is unlikely; here the
agreement is indeed very good. Due to the particular symmetry
of garnets, as we have seen, these vibrational modes imply
oxygen atoms exclusively, but such atoms are linked to all the
other atoms in the structure, thereby providing a test of more
general value.

For pyrope, the most reliable agreement with the experimental
data has obtained by Chaplin et al.25 This work has been taken
here as the best basis for interpreting the vibrational spectra; in
any case, our own rigid-ion calculations provide comparable
results, thereby justifying their extension to the whole Brillouin
zone (see below). Since the potentials used by these authors
were exclusively derived from the best fit to the spectra of other
substances, their transferability has been confirmed. Here
especially, rather than because of the slightly better agreement
with the experimental data, the superior performance of Chaplin
et al.’s results is evident; such a superiority is most probably
due to having used a shell model to account at least partially
for the polarizability of the oxygen atoms.

Measurements of phonon dispersion curves for pyrope have
been performed by Artioli et al.:26 such results and the calculated
values obtained by these authors are reported in Figure 1,
together with our calculations; the agreement is quite good,
thereby confirming the validity of our model.

4. Evaluation of Thermodynamic Functions at Low
Temperature

Estimates of thermodynamic functions for pyrope and al-
mandine are reported in Tables 4 and 5, respectively; in these
tables, the purely vibrational contributions to the heat capacity
and the entropy are reported in columns 4 and 7, respectively.
Here, it is easy to notice thatat room temperature and higher
temperaturesour purely vibrational estimates aretoo low for
entropy, even if the contribution of magnetic spin disorder
∆S° ) 3R ln 5 ) 40.14 J/mol‚K is added for almandine; instead,
at these temperatures the calculated values of theheat capacity
(Figure 2) are always reasonable, a point which provides
additional evidence in favor of our vibrational model and
potentials even in these cases, thereby excluding substantial
influence of anharmonicity.

Because of the considerably smaller ionic radius of Fe2+ and
Mg2+ with respect to that of Ca2+, and since the “ideal” highly

TABLE 3: Frequencies (cm-1) for Infrared- or Raman-Active Modes in Almandine at Room Temperature

T1u (TO)
obs23 112 138 158 196 236 318 345 376 412 448 468 525 561 635 865 889 952
calc9 a 142 166 179 220 272 291 362 396 432 458 501 533 557 604 899 944 962

T1u (LO)
obs23 115 147 160 205 246 322 347 396 422 518 461? 534 597 638 923 882? 1038
calc9 a 143 168 185 230 273 298 364 398 437 518 473 538 588 616 908 962 1004

T2g

obs23 166 198 212 239 293 312 355 474 498 576 628 862 892 1032
calc9 a 138 180 202 225 326 354 365 459 537 622 652 900 948 1020

Eg A1g

obs23 163 326 368 421 521 593 910 920 347 553 910
calc9 a 170 275 346 396 529 554 858 891 343 563 920

a Calculated values9 using potential no. 4.

TABLE 4: Thermodynamic Functions for Pyrope (J/mol‚K)
at Different Temperaturesa

T (K) Cv(obs) Cv(corr)b Cv(vibr) S(obs) S(corr)b S(vibr)

20 0.84 0.43 0.43 0.20 0.11 0.11
40 11.0 6.2 5.8 3.15 1.59 1.55
60 33.4 31.9 22.0 11.6 8.0 6.6
80 62.3 81.4 47.7 25.1 23.7 16.3

100 93.7 122.0 78.7 42.5 46.7 30.2
120 125.3 145.4 111.3 62.5 71.1 47.4
140 156.0 165.8 143.2 84.2 95.1 67.0
160 184.7 187.6 173.2 107.1 118.6 88.1
180 210.9 210.2 200.8 130.5 142.0 110.1
200 234.5 232.4 226.0 154.1 165.3 132.6
220 256.0 253.4 248.9 177.6 188.5 155.3
240 275.6 273.0 269.7 200.9 211.4 177.8
260 293.5 290.9 288.4 223.8 234.0 200.2
298 323.1 320.7 319.2 266.3 275.7 241.6
400 382.4 378.4 377.8 371.0 378.9 344.5
500 418.0 413.3 413.0 458.0 467.4 432.9
600 436.8 435.7 435.5 545.0 544.9 510.4
700 452.0 450.6 450.5 610.0 613.2 578.7

a Observed data from Haselton and Westrum,28 and above 400 K
from Tequi et al.34 The Cv data have been obtained by subtracting
Cp - Cv ) R2TVκ from the observed values, using the physical constants
reported by Hofmeister and Chopelas.23 b The corrected values for the
specific heatCv and the entropy [Cv(corr) andS(corr), respectively]
have been obtained by adding the equilibrium contribution due to
disorder to the vibrational estimates [Cv(vibr) andS(vibr), respectively].
The corrected values are for∆E ) 4050 J/mol.
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symmetric 24c site in theIa3d group for all such atoms is more
or less of the same size for all the garnet structures, for Ca-
poor terms the possibility of configurational disorder becomes
reasonable; such a possibility is connected with statistical
displacement of the Mg or Fe atoms from their “ideal” position
and might also explain the anomalous behavior of their ADPs
as observed from crystallographic measurements.9 On slightly

shifting the Mg or Fe atoms from the 24c site, four equivalent,
symmetry-related sites would be involved, with consequent
statistical occupation of1/4. Following such an assumption,
complete configurational disorder would involve an entropy
increase of 3R ln 4 ) 34.45 J/mol‚K; as a first approximation,
by adding this contribution to our theoretical estimates, the
corrected results became indeed in good agreement with the
corresponding calorimetric data above 240 K.9

Without affirming that the “real” situation indeed corresponds
to our inference, it might be interesting to extend such a heuristic
procedure to low temperatures as well, for which disorder would
not be complete. A very simple way of accounting for this
situation could be the following:

Let us imagine there is equilibrium in the solid state between
the disordered form and the ordered form. Accordingly, the
partly disordered crystal can be considered to be a temperature-
dependent equilibrium mixture of these two independent forms,
as they were different substances; in view of their great chemical
similarity, the vibrational spectrum can be considered to be
practically identical for both of them, and the mixture to be an
ideal solution. Therefore, the molar excess of entropy∆S of
the mixture with respect to that of the ordered form will be the
following:

where∆S° ) 3R ln 4 is the molar excess entropy of the pure
disordered form with respect to the ordered counterpart,x is its
molar fraction, and∆Smix is the entropy of mixing. At a given

Figure 1. Acoustic phonon dispersion curves for pyrope: (a) transverse
(TA) modes along [001]; (b) longitudinal (LA) modes along [111]; (c)
transverse (TA) modes along [111]. The frequencies (vertical axis) are
reported in cm-1, whereas on the horizontal axes the fractions of the
corresponding reciprocalprimitiVe unit-cell distance are reported:
triangles, calculated values by Artioli et al.;26 diamonds, observed values
by Artioli et al.;26 squares and crosses, our calculations.

TABLE 5: Thermodynamic Functions for Almandine at
Different Temperatures (J/mol‚K) a

T (K) Cv(obs) Cv(corr)b Cv(vibr) S(obs) S(corr)b S(vibr)

10 16.2 56.0 0.1 23.8 19.8 0.0
15 15.0 19.3 0.2 30.1 35.5 0.1
20 14.3 6.6 0.8 34.3 38.9 0.2
30 16.6 5.2 4.0 40.4 40.9 1.0
40 24.7 12.1 11.5 46.2 43.1 3.1
50 36.3 23.5 22.1 52.9 47.0 6.8
60 50.0 41.9 36.7 60.7 52.9 12.1
70 64.7 65.2 52.1 69.5 61.2 19.1
80 80.2 92.5 68.4 79.2 71.6 27.0

100 111.8 143.6 101.9 100.5 97.8 45.7
120 143.3 175.2 134.3 123.8 127.1 67.2
140 173.4 195.4 164.9 148.2 155.8 90.3
160 201.5 213.9 193.2 173.3 183.1 114.2
180 227.4 233.0 219.2 198.6 209.4 138.5
200 250.9 252.3 242.9 223.8 232.1 160.0
220 272.6 271.2 264.5 248.8 256.8 183.9
240 292.8 288.8 284.0 273.5 281.3 207.9
260 311.6 306.0 302.4 297.7 306.1 232.4
280 328.4 321.1 318.3 321.5 329.4 255.5
298 341.9 333.6 331.4 342.6 349.9 275.8
325 360.6 350.9 349.2 373.0 379.8 305.5
350 373.7 364.9 363.6 400.4 406.3 331.9
400 396.5 397.3 396.5 451.8 454.9 380.4
420 403.7 396.6 395.9 471.0 474.8 400.3
500 429.5 423.0 422.6 544.3 546.1 471.5
600 453.0 445.4 445.1 625.1 625.7 551.0
700 470.6 460.7 460.5 696.5 695.7 621.0
800 483.7 470.8 470.7 760.6 758.5 683.8

1000 498.6 486.3 486.2 871.0 866.0 791.2

a Observed data from Anovitz et al.31 TheCv data have been obtained
by subtractingCp - Cv ) R2TVκ from the observed values, using the
physical constants reported by these authors.b The corrected values
for the specific heat and the entropy [Cv(corr) andS(corr), respectively]
have been obtained by adding the equilibrium contribution due to
disorder to the vibrational estimates [Cv(vibr) andS(vibr), respectively].
The corrected values are for∆E ) 4500 J/mol and∆Emagn) 450 J/mol.

∆S) x∆S° + ∆Smix )
3xR ln 4 - R[x ln x + (1 - x) ln(1 - x)]
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temperature, if both forms in the crystal are at equilibrium, it
will be

where∆E is the excess energy of the “pure” disordered form
with respect to that of the ordered form. Therefore, on assigning
a certain value practically independent of temperature to∆E, it
is possible to deduce the molar fractionx and the correction
∆S to be added to the vibrational entropy at different temper-
atures; the results for pyrope are shown in column 5 of
Table 4.

On comparing these results with the corresponding experi-
mental data, the agreement becomes indeed reasonable, and at
least in practice such a behavior approaches that of a sluggish
“order-disorder transition” taking place at low temperature; a
similar case can be observed in Table 5 for almandine (see
below). Around the transition point, the process would actually
involve anharmonic motion on its taking place, and for this
reason our proposed model, although “harmonic”, in some way
accounts for anharmonicity, in a very simple way, at least in
the transition region. It is interesting to remark thatsuch
anharmonic behaVior is important at low rather than at high
temperatures, in line with some crystallographic observations.27

A similar treatment can also be extended to dealing with
magnetic disorder, although the approximation of having an ideal

mixture might not be as satisfactory, in view of the different
magnetic interactions between the ions; should such inconve-
niences occur in practice, in any case, they would be evident
only for incomplete disorder of this kind, that is, at very low
temperatures. Therefore, for almandine, according to our model,
there should betwo kinds of disorder, one magnetic and the
other configurational, the latter deriving from partial occupation
of sites around 24c.

Here, a rough assumption would be that the equilibrium
constantsKeq between the “disordered” and the “ordered”
magnetic form are the same for both the “site-ordered” and “site-
disordered” form, and vice versa; therefore, the respective molar
fractionsx0 andx1 can be obtained independently, on applying
the procedure shown above. Following the scheme for ideal
solutions, the entropy of mixing should be the following:

wherey1 ) x0x1, y2 ) x0(1 - x1), y3 ) x1(1 - x0), andy4 )
(1 - x0)(1 - x1), since in this case there are four “substances”,
differing from each other on the grounds of order-disorder.
Because the magnetic order-disorder transition occurs at much
lower temperature than that concerning “static” disorder, the
corresponding value of the excess energy (∆Emagn) should be
very low, and on the basis of the best fit of our model to
almandine, it should be around 450 J/mol. In any case, since at
temperatures around 30-40 K there is already almost complete

Figure 2. Heat capacities at constant volume (Cv) and values of entropyS (J/mol‚K) for almandine and pyrope as a function of temperature (K):
squares, calculated values; diamonds, observed values; triangles, purely vibrational contributions.

[x]/[1 - x] ) Keq )
exp(-∆F°/RT) ≈ exp(-∆E/RT) exp(∆S/R)

∆Smix ) -R[y1 ln y1 + y2 ln y2 + y3 ln y3 + y4 ln y4]
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magnetic disorder, the inadequacies of such an approximation
handling magnetic order-disorder transformations are not so
important for most applications, and not at all for those at room
and higher temperatures.

5. Discussion and Conclusions

This model implying the existence of temperature-dependent
order-disorder equilibrium accounts for a“nonVibrational”
contribution to the specific heat, so that especially in the
proximity of the “transition points” the measured values are
higher than those estimated by the harmonic model of lattice
dynamics alone, in agreement with the character of a very
sluggish higher-order phase transition. In this way, the observed
“anomalously high heat capacity” observed for pyrope22,28-29

might be explained; similar effects were also observed for
almandine at low temperature.31-32

The reasonable behavior of our assumptions is shown in
Tables 3 and 4 (see the third and sixth columns): here, the
agreement with the observed data is satisfactory, especially at
temperatures which are not too low.

The inferior performance of our model at very low temper-
atures is due to several factors. Apart from the approximations
involved, the extrapolation of physical properties such as thermal
expansion parameters or the bulk moduli may be critical,
especially in proximity to transition points; such an inconve-
nience surely affects the experimental estimates of the specific
heat at constant volumeCv, which are deduced from the
corresponding valuesCp actually measured at constant pressure.
Moreover, our lattice-dynamical calculations have been per-
formed using the crystal data at room temperature only.10,12

In some of our works11 the possibility of using temperature-
dependent crystal data has been considered in detail; a major
difficulty arises because the values of bond lengths as they are
obtained from crystallography should be corrected for thermal
libration (a correction depending itself upon lattice dynamics)
and the corresponding fit to spectroscopic data in deriving
empirical potentials valid for all temperatures would become
problematic. For this reason, we have adopted the present
procedure, since all the other alternatives are far more complex
and not completely convincing.

It is usually difficult to establish how much the use of room
temperature data in the lattice-dynamical treatment could affect
the derived estimates of thermodynamic quantities at low
temperatures, sincesapart from the theoretical difficulties
outlined above which would render the results doubtfulsfor
this purpose the calculations (which are already quite bulky)
should be repeated, allowing variation of unit-cell parameters,
as well as of the structural data. However, we do happen to
have some information: for instance, at 100 K, for which
structural data are available, using these data, the calculated
value of vibrational entropy would be 27.7 instead of 30.2 cal/
mol‚K;9 such a difference of 2.5 eu would result in a better
agreement with the experimental estimate, although it is too
small for believing that the observed disagreement in thermo-
dynamic functions at low temperature can be fully explained
in this way.

The disagreement between the observed and the calculated
values of the heat capacity is often much higher than the
correspondingCp - Cv difference; furthermore, considering that
it occurs even for a non-antiferromagnetic substance such as
pyrope, the reasons given above concerning thermal expansion
parameters, the bulk moduli, or also the nonideality of the solid
solution of different magnetic domains are not sufficient. On
the other hand, it can be noticed that at these low temperatures

the agreement for entropy(Tables 4 and 5)is much better than
that for the specific heat; here, a plausible answer is that the
experimental values of entropy actually result from an integra-
tion (in practice, a weighted average) of data at different
temperatures. A definite possibility is that at very low temper-
atures equilibrium is very difficult to achieve in a “frozen”
system, due to problems of activation energy; for this reason,
the experimental data for the specific heat might not be entirely
correct, and the errors are balancing each other when the
experimental values for entropy are considered instead.

A further point should be considered: on shifting an atom
from 24c to these “secondary” positions,rather than energy,
entropy may become instead the determining factor. For
instance, the probability density of some atomic positions
corresponding to theminimum free energyconformation might
show maximanot necessarilycoinciding with positional energy
minima; such a case is favored by the substantial increase in
configurational entropy ()3R ln 4) occurring when one atom
is displaced from a high-symmetry position, so that the
surrounding region is statistically occupied.

This might just be the case of pyrope and almandine, where
the displacement of the atoms from the high-symmetrical 24c
site implies a very low variation of packing energy, and
especially so if the shift corresponds to a low-frequency normal
mode: Here, despite the apparent “static disorder”, the real
situation might indeed correspond to a sophisticated case of
anharmonic behavior, which is, however, far beyond the present
status of the art to be exactly handled.

Therefore, although the “static disorder” invoked here might
not necessarily correspond to “reality”, it may become indeed
a heuristic assumption, since a reasonable agreement with
calorimetric data can be obtained. Such an assumption looks
indeed reasonable, at least in view of the present difficulty in
using more advanced theoretical ways to reproduce these
experimental data.
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